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CONSTITUTIVE EQUATIONS OF AN ISOTROPIC HYPERELASTIC BODY

UDC 539.3V. N. Solodovnikov

Stress–strain equations for an isotropic hyperelastic body are formulated. It is shown that the
strain energy density whose gradient determines stresses can be defined as a function of two
rather than three arguments, namely, strain-tensor invariants. In the case of small strains, the
equations become relations of Hooke’s law with two material constants, namely, shear modulus
and bulk modulus.

1. Strains. We consider two interrelated (Cartesian and curvilinear) coordinate systems in the
Euclidean space. We denote the Cartesian and curvilinear coordinates of a material point at the initial
moment τ = 0 by yi and xi, respectively, and those at the current moment τ by ŷi and x̂i, respectively. The
radius-vectors of material points vary from R = yiki at τ = 0 to R̂ = ŷiki at the moment τ (ki are the basis
vectors of the Cartesian coordinate system). For the initial position of the points, the basis vectors and metric
tensor of the curvilinear coordinate system are li = R,xi = yn

,xi
kn and gij = li · lj , respectively, and, for the

current position, they are l̂i = R̂,x̂i = ŷn
,x̂i
kn and ĝij = l̂i · l̂j , respectively. We write the displacement vector in

the form u = R̂−R = wiki = uili = ûil̂i, where wn = uiyn
,xi

= ûiŷn
,x̂i

. Moreover, we have R̂,xi = li+un,i ln and

R,x̂i = l̂i − ûn;i l̂n. Here the subscripts and superscripts i, j, m, and n take the values 1, 2, and 3; summation
from 1 to 3 is performed over repeated indices. The variables in the subscript after the comma denote partial
differentiation. The subscript i after the comma denotes covariant differentiation with respect to xi, and that
after the semicolon denotes covariant differentiation with respect to x̂i. Covariant differentiation with respect
to xi and x̂i is performed in the same curvilinear coordinate system, but the differentiated vectors and tensors
are resolved into the different basis vectors li and l̂i, respectively. The vectors R̂,xi are the basis vectors in
the comoving Lagrangian coordinate system. In quasistatic problems, any monotonically increasing loading
parameter can be used as τ .

We consider the elementary material fibers in the initial dR = R,xi dx
i and current dR̂ = R̂,xi dx

i

states. The covariant components of the Green strain tensor are determined as coefficients in the expression
for the difference between the squared initial and current lengths of these fibers |dR̂|2 − |dR|2 = 2eij dxi dxj

by the formulas

eij = (ŷm,xi ŷ
m
,xj − y

n
,xiy

n
,xj )/2 = (ĝmnx̂m,xi x̂

n
,xj − gij)/2 = (ui,j + uj,i + un,i un,j)/2. (1.1)

Specifying the differentials of the current coordinates of the material points, we determine the fibers in the
initial dR′ = R,x̂i dx̂

i and current dR̂′ = R̂,x̂i dx̂
i states. The coefficients in the expression |dR̂′|2 − |dR′|2 =

2êij dx̂i dx̂j are the covariant components of the Almansi strain tensor

êij = (ŷm,x̂i ŷ
m
,x̂j − y

n
,x̂iy

n
,x̂j )/2 = (ĝij − gmnxm,x̂ix

n
,x̂j )/2 = (ûi;j + ûj;i − ûn;i ûn;j)/2. (1.2)

The tensors e = eij l
i lj and ê = êij l̂

i l̂j determine the strain at the same material point at the current
moment. From (1.1) and (1.2), we obtain the relations
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êmn = eijx
i
,x̂mx

j
,x̂n , eij = êmnx̂

m
,xi x̂

n
,xj , (1.3)

which relate the values of the covariant components of e and ê.
We introduce the matrices of partial derivatives Ŷ = ‖ŷi

,yj
‖, Γ̂ = ‖x̂i

,xj
‖, Π = ‖yi

,xj
‖, Π̂ = ‖ŷi

,x̂j
‖,

Y = Ŷ −1, and Γ = Γ̂−1 and the matrices of the covariant components of the strain and metric tensors
E = ‖eij‖, Ê = ‖êij‖, G = ‖gij‖, and Ĝ = ‖ĝij‖ (i and j are the row and column numbers, respectively). In
matrix notation, we obtain

E = (Γ̂tĜΓ̂−G)/2, Ê = (Ĝ− ΓtGΓ)/2, (1.4)

and, hence, Ê = ΓtE Γ (the superscript “t” denotes the transpose of matrices).
To determine the volume strain, we use the Cartesian coordinate system. For an undeformed body,

we consider an elementary parallelepiped bounded by the coordinate planes and having edges of length
dyi and volume dV0 = dy1dy2dy3. At the current moment, it occupies the volume dV = (R̂,y1 × R̂,y2) ·
R̂,y3 dV0 = J dV0, where J = det Ŷ is the Jacobian of transformation of the initial coordinates to the current
coordinates of the material points. The volume strain εV is determined by the formulas J = dV/dV0 and
εV = (dV −dV0)/dV0 = J−1. Equating the matrix determinants in the equalities Ŷ tŶ = (Π−1)t(G+2E)Π−1

and Y tY = (Π̂−1)t(Ĝ− 2Ê)Π̂−1 implied by (1.4), we express the Jacobian in terms of the components of the
strain tensors e and ê:

J = (detG)−1/2[det(G+ 2E)]1/2 = (det Ĝ)1/2[det(Ĝ− 2Ê)]−1/2. (1.5)

2. Strain Rates. Let u̇ = v = vili = v̂il̂i be the velocities of the material points at the moment τ (the
dot denotes differentiation with respect to τ). We assume that, at the moment τ , the radius-vectors of the
points (R̂) and the elementary material fibers determined by the differentials dxi and dx̂i (dR̂ = R̂,xi dx

i and
dR̂′ = R̂,x̂i dx̂

i, respectively) change to R̂1 = R̂+ v∆τ , dR̂1 = R̂1,xi dx
i, and dR̂′1 = R̂1,x̂i dx̂

i, respectively,
at the moment τ + ∆τ (∆τ is the small period). Determining the rates of variation of the squared lengths of
these fibers

lim
∆τ→0

|dR̂1|2 − |dR̂|2

∆τ
= 2ηij dxi dxj , lim

∆τ→0

|dR̂′1|2 − |dR̂′|2

∆τ
= 2η̂ij dx̂i dx̂j ,

we obtain the covariant components of the two strain-rate tensors

ηij = ėij = (v,xi · R̂,xj + v,xj · R̂,xi)/2 = (vi,j + vj,i + un,i vn,j + un,j vn,i)/2,

η̂ij = (v,x̂i · R̂,x̂j + v,x̂j · R̂,x̂i)/2 = (v̂i;j + v̂j;i)/2,

which are related by

η̂mn = ηij x
i
,x̂mx

j
,x̂n , ηij = η̂mn x̂

m
,xi x̂

n
,xj . (2.1)

The tensors η = ηij l
i lj and η̂ = η̂ij l̂

i l̂j are the strain rates at the current moment at the same material
point, but they correspond to different states of the body (the tensors η and η̂ refer to the initial and current
states, respectively). The tensor η is the Green strain-rate tensor η = ė.

Differentiating the Jacobian J = det Ŷ with respect to τ , we obtain J̇ = Jẇm,ŷm . The equalities
v,x̂i = ẇm

,x̂i
km = v̂n;i l̂n imply that ẇm

,x̂i
= v̂n;i ŷ

m
,x̂n , ẇm,ŷn = v̂j;i ŷ

m
,x̂j
x̂i,ŷn , and ẇm,ŷm = v̂i;i = η̂ii. The volume-strain

rate is given by ε̇V = J̇ = J η̂ii. Hence, η̂ii = J̇/J .
We decompose η̂ into the deviatoric and spherical parts:

η̂ij = η̂
(1)
ij + η̂

(2)
ij , η̂

(1)
ij = η̂ij − η̂nn ĝij/3, η̂

(2)
ij = η̂nn ĝij/3

and, according to (2.1), we find the decomposition of η:

ηij = η
(1)
ij + η

(2)
ij , η

(1)
ij = η̂(1)

mn x̂
m
,xi x̂

n
,xj = ėij − (J̇/(3J))(gij + 2eij) = J2/3θ̇ij ,

(2.2)
η

(2)
ij = η̂(2)

mn x̂
m
,xi x̂

n
,xj = η̂nn ŷ

m
,xi ŷ

m
,xj/3.
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The tensors η̂(1) = η̂
(1)
ij l̂

i l̂j , η̂(2) = η̂
(2)
ij l̂

i l̂j , η(1) = η
(1)
ij l

i lj , and η(2) = η
(2)
ij l

i lj are symmetric. We have
η̂ = η̂(1) + η̂(2), η = η(1) + η(2), and η(1) = J2/3θ̇. The tensor η(1) can be written in the form of a product of
J2/3 and the rate of variation of the tensor θ = θij l

i lj , whose components are expressed with allowance for
(1.5) in terms of the components of the strain tensor e:

θij = J−2/3(gij + 2eij)/2 = J−2/3ŷm,xi ŷ
m
,xj/2. (2.3)

The tensors e and θ are coaxial.
The determinant of the matrix F = ‖θij‖ composed of the mixed components of θ

F = J−2/3G−1(G+ 2E)/2 = J−2/3G−1ΠtŶ tŶΠ/2

is a constant that does not depend on strains:

detF = J−2(detG)−1(det Π)2(det Ŷ )2/8 = J−2(det Ŷ )2/8 = 1/8.

This imposes a constraint on admissible values of the θ components, which cannot be arbitrary and indepen-
dent of each other. In contrast to the tensor θ, the tensor e has not three but only two basis invariants that
are variable and independent of the orientation of its principal axes. As these basis invariants, one can take

Θ1 = θnn = J−2/3 I1, Θ2 = θij ′ θ′ij = J−4/3 I2, (2.4)

where I1 = 1.5+enn and I2 = eij ′e′ij are the invariants of e. The Jacobian J can be considered as an additional
parameter which, together with θ, determines the strain tensor eij = J2/3θij − 0.5gij . The deviatoric tensors
θ′ij = θij − (θnn/3)gij = J−2/3e′ij and e′ij = eij − (enn/3)gij , which correspond to e and θ, differ by the
multiplier J−2/3.

3. Stresses. We introduce the symmetric Cauchy and Piola–Kirchhoff stress tensors (σ̂ and σ,
respectively), which are conjugate with the tensors η̂ and η, respectively. The double convolutions of the
stress tensors with η̂ and η are the power densities of stress work in the strain rates per unit volume in the
current and initial states

ψ̂ = σ̂ij η̂ij = σ̂ij v̂j;i, ψ = σijηij = Σijvj,i, Σij = σij + σinuj,n. (3.1)

The tensors σ̂ = σ̂ij l̂i l̂j and σ = σij li lj determine the stress state at the same material point. The quantities
Σij in (3.1) are the contravariant components of the first nonsymmetric Piola–Kirchhoff stress tensor. Using
the equalities ψ = Jψ̂ and (2.1), we obtain the following relations between the contravariant components of
the tensors σ and σ̂:

σij = Jσ̂mnxi,x̂mx
j
,x̂n , σ̂mn = J−1σij x̂m,xi x̂

n
,xj . (3.2)

We decompose σ̂ into the deviatoric and spherical parts:

σ̂ij = σ̂(1)ij + σ̂(2)ij , σ̂(1)ij = σ̂ij − pĝij , σ̂(2)ij = pĝij ,

where p = σ̂nn/3 is the average stress, which is called the hydrostatic pressure. According to (3.2), we obtain
the decomposition of σ:

σij = σ(1)ij + σ(2)ij , σ(1)ij = Jσ̂(1)mnxi,x̂mx
j
,x̂n , σ(2)ij = pJαij ,

(3.3)

αij = xi,ŷmx
j
,ŷm = [(G+ 2E)−1]ij .

The tensors σ̂(1) = σ̂(1)ij l̂il̂j , σ̂(2) = σ̂(2)ij l̂il̂j , σ(1) = σ(1)ijlilj , σ(2) = σ(2)ijlilj , and α = αij li lj are
symmetric. We have σ̂ = σ̂(1) + σ̂(2), σ = σ(1) + σ(2), and σ(2) = pJα.

Using (2.2) and (3.3), and the equalities σ(1)ijη
(2)
ij = σ(2)ijη

(1)
ij = 0, we write the power density of stress

work in the strain rates in the form
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ψ = sij θ̇ij + pJ̇, (3.4)

where

sij = J2/3σ(1)ij . (3.5)

Substituting the expressions

σ̂(1)mn = J−5/3sij x̂m,xi x̂
n
,xj , η̂(1)

mn = J2/3θ̇ij x
i
,x̂mx

j
,x̂n

implied by (2.1), (2.2), (3.3), and (3.5) into the equations σ̂(1)mnĝmn = η̂
(1)
mnĝmn = 0, we obtain the equalities

sijθij = 0, σ(2)ij θ̇ij = 0, (3.6)

which are used below to construct equations of an isotropic hyperelastic body. We note that, given p and sij ,
one can determine the stresses σij = J−2/3sij + pJαij and, hence [using Eqs. (3.2)], σ̂ij .

4. Equations of an Isotropic Hyperelastic Body. In reversible thermodynamic processes [1], for
each elementary material particle, for the small period dτ , the increment of total energy dU takes the value

dU = dW + dQ+ dA = (v · v̇ + T Ṡ + ρ−1
0 ψ) dM dτ,

where dW is the kinetic-energy increment, dQ is the heat inflow, dA is the increment of stress work due to the
action of the external mass and surface forces on the body (ρ−1

0 ψ = ρ−1ψ̂), T is the absolute temperature, S is
the entropy density per unit mass of the body, dM = ρ0dV0 = ρdV is the particle mass, and ρ0 and ρ are the
densities of material in the initial and current states, respectively. We confine our analysis to processes that
are either isentropic when Ṡ = 0 and, hence, adiabatic or isothermal processes. Consequently, in addition to
dU , the increment of stress work dA must also be a differential. Satisfying this condition and taking (3.4) into
account, we assume, in accordance with the definition of an isotropic hyperelastic body [2], that the quantity

dΨ = ψ dτ = sij dθij + p dJ (4.1)

is the total differential of the strain-energy density per unit volume of the undeformed body Ψ = Ψ(Θ1,Θ2, J)
which depends on the Jacobian J and the invariants of the tensor θ (2.4). In this case, the work of stresses
in each elementary material particle is equal to zero on any closed deformation path.

In accordance with (4.1), we assume

sij = Ψ,θij = Ψ,Θ1g
ij + 2 Ψ,Θ2θ

ij ′, p = Ψ,J . (4.2)

In the expression for sij , terms with σ(2)ij are ignored, since they do not contribute to the work of stresses
in θ̇ij [see (3.6)]. Satisfying the first equality in (3.6), we obtain the first-order partial differential equation
for Ψ

Θ1Ψ,Θ1 + 2Θ2Ψ,Θ2 = 0.

Its general solution is an arbitrary function of integrals of the characteristic system of equations

2Θ2 dΘ1 = Θ1 dΘ2, dJ = 0,

according to which we have Υ = Θ2Θ−2
1 = I2I

−2
1 = C1 and J = C2 (C1, C2 = const). Hence, Ψ is a function

of only two arguments: Ψ = Ψ(Υ, J). The formulas for sij in (4.2) are written in the form

sij = 2βΘ−2
1 (θij ′ −Θ1Υgij) (β = Ψ,Υ).

With allowance for (2.3), (2.4), and (3.5), we divide their left and right sides by the common factor J2/3.
Using the expressions for σ(2)ij in (3.3), we obtain the equations of an isotropic hyperelastic body

σij = Ψ,eij = 2µ(eij ′ − χgij) + γαij . (4.3)

Here µ = βI−2
1 , γ = pJ , χ = I1Υ, and Υ = I2I

−2
1 . We have I1 > 0, I2 > 0, 0 6 Υ < 2/3, and J > 0. The

coefficients µ and γ must satisfy the equation

(µI2
1 ),J = (γJ−1),Υ. (4.4)
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Thus, the coefficients in Eqs. (4.3) depend on three invariants of the strain tensor I1, I2, and J , whereas Ψ
is a function of two arguments J and Υ. We note that in [2–6], the strain-energy density is determined as a
function of three arguments.

Using (1.3), (3.2), (3.3), and (4.3), we obtain the equations relating the Cauchy stress tensor σ̂ to the
Almansi strain tensor ê:

σ̂ij = µJ−1(α̂inα̂jn − χ̂α̂ij) + pĝij , χ̂ = 2I1(Υ + 1/3),
(4.5)

α̂ij = x̂i,ym x̂
j
,ym = [(Ĝ− 2Ê)−1]ij .

Here α̂ij are the contravariant components of the tensor α̂ = α̂ij l̂i l̂j .
We assume that the hydrostatic pressure p depends only on the volume strain εV . Then p = p(J), and

the form of the function Ψ is considerably simplified. The latter is written in the form of two functions

Ψ = Ψ1 + Ψ2, Ψ2 =
∫
p dJ,

each of which depends only on one argument: Ψ1 = Ψ1(Υ) or Ψ2 = Ψ2(J). The coefficients µ and γ in (4.3)
take the values µ = I−2

1 Ψ1,Υ and γ = JΨ2,J and satisfy Eq. (4.4) identically.
In the case of small strains, Eqs. (4.3) and (4.5), which can be linearized with respect to strains,

become the relations of Hooke’s law σij = 2µ0e
ij ′ + pgij and p = Kenn with two material constants, namely,

the shear modulus µ0 and the bulk modulus K, which are obtained in the limiting process µ → µ0 and
p/εV → K as the strains tend to zero.
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